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Abstract

The price elasticity of demand can be estimated from observational data using in-
strumental variables (IV). However, naive IV estimators may be inconsistent in settings
with autocorrelated time series. We argue that causal time graphs can simplify IV iden-
tification and help select consistent estimators. To do so, we propose to first model the
equilibrium condition by an unobserved confounder, deriving a directed acyclic graph
(DAG) while maintaining the assumption of a simultaneous determination of prices and
quantities. We then exploit recent advances in graphical inference to derive valid IV
estimators, including estimators that achieve consistency by simultaneously estimating
nuisance effects. We further argue that observing significant differences between the esti-
mates of presumably valid estimators can help to reject false model assumptions, thereby
improving our understanding of underlying economic dynamics. We apply this approach
to the German electricity market, estimating the price elasticity of demand on simulated
and real-world data. The findings underscore the importance of accounting for structural
autocorrelation in IV-based analysis.
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ELASTICITIES WITH GRAPHS

1 Introduction

Estimating the price elasticity of demand from observational time series is a fundamental
problem in econometrics. Observable prices and quantities are determined simultaneously
based on the underlying economic primitives, the demand and supply equations. Identifying
the price elasticity of demand from data, therefore, requires non-trivial methodology, such as
using credible supply-shifting instrumental variables (IVs) (Wright, 1928; Tinbergen, 1940;
J. D. Angrist, Graddy, and Imbens, 2000).

Even simple time dependencies in the economic relationships that cause the data to be
autocorrelated, however, may make naive IV estimators inconsistent (e.g., Thams et al.,
2022). For simulated data (with known ground truth), Figure 1 shows the importance of
appropriately considering time dynamics. Here, demand structurally depends on its past,
and an IV estimator that neglects these time dependencies overestimates the elasticity by
up to an order of magnitude. The figure also shows other IV estimators that are consistent
despite the time dependence. So, how do we determine the consistency of IV estimators when
time series are autocorrelated?

To find consistent estimators for causal effects, the statistics and computer science com-
munities have developed a framework based on structural and graphical causal models (Pearl,
2009; Spirtes, Glymour, and Scheines, 2000). In these models, each node represents a vari-
able, and a directed edge indicates a direct causal influence. Assuming the Markov condition
(Lauritzen, 1996), graphical criteria such as d-separation can be employed to determine con-
ditional independencies (Brito and Pearl, 2002; Henckel, Buttenschoen, and Maathuis, 2023).
Checking d-separation between two nodes works by assessing whether all paths between these
nodes are blocked by a conditioning set and can be used to aid in the identification of valid
adjustment sets or conditional instruments. For example, an IV estimator may be incon-
sistent if an unblocked path exists between the instrument and the dependent variable that
does not go via the endogenous variable (see Section 3.1 for details). Recently, Thams et al.
(2022) have extended the graphical criteria for valid conditional IV estimators to infinite
causal time series graphs (Peters, Janzing, and Schölkopf, 2013), enabling the identification
of valid conditional IV estimators in settings with time dependence.

To exploit the power of inference via causal time graphs for estimating the price elasticity
of demand, we need to find an acyclic representation of a system at equilibrium. In Section 2,
we do so by representing the equilibrium condition using an unobserved error term, which
leads to a model with unobserved confounding. We then apply the graphical reasoning to
three different demand dynamics and, based on their corresponding causal time series graphs,
argue under which circumstances the naive IV estimator fails to be consistent.

In Section 3.2, we use the graph-based criteria to derive valid conditional IV estimators
for each model. These estimators are based on two different ideas. First, blocking paths
via conditioning: Here, the estimators achieve consistency by including lagged terms in the
conditioning set; this approach leads to a class of estimators, which includes, for example,
the lag-augmented local projection IV estimator (Stock and Watson, 2018; Montiel Olea
and Plagborg-Møller, 2021; Montiel Olea, Plagborg-Møller, et al., 2024) which is commonly
used in macro-economics. Second, estimating nuisance effects: This approach, developed by
Thams et al. (2022), simultaneously estimates effects that are not of primary interest and
whose estimates are afterward disregarded.
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Figure 1: The effect of time dynamics on the validity of IV estimators. The left column shows
the causal full time graphs of two underlying data-generating processes; the causal effect of
interest is Pt → Dt (red edge). Top. In Model I, demand is inertial as Dt structurally depends
on Dt−1. The blue path is unblocked if Wt is used as an instrument without additional
controls. The naive IV estimator is, therefore, generally biased. The right column shows
the corresponding estimates β̂P for varying strength of structural autocorrelation in demand.
Bottom. In Model II, the price-responsive part of demand is not autocorrelated; only the
residual demand is. The orange path is now blocked given ∅ but unblocked given Dt−1: Dt−1

is a collider in the terminology of causal graphs. Here, the naive IV estimator is consistent.
The nuisance IV estimator introduced in this paper (shown in green) is valid under both
models.
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The proposed graphical approach allows us to systematically analyze the validity of several
estimators. We further argue that observing significant differences between the estimates of
presumably valid estimators can help to reject false model assumptions, thereby improving
our understanding of economic dynamics. If the researcher’s assumptions encoded in the
structural model are correct, two valid estimators should yield comparable results (up to
finite sample errors). We argue that a statistically significant difference (i.e., non-overlapping
confidence intervals) between two estimates that were considered valid ex-ante should lead
the researcher to reject her model assumptions. This may be seen as an alternative approach
to model validation using the reductionist approach (Hendry, 1995).

The above findings allow us to study the problem of estimating the price elasticity of
demand in the electricity market using weather-derived instruments, both on simulated data
(Section 4) and on real-world data (Section 5). Estimating the price elasticity of electricity
demand is important to manage the transition towards a carbon-neutral economy. Weather-
dependent supply by renewables replaces flexible fossil fuel-based power plants. The price of
electricity becomes highly dependent on the weather and more volatile. If demand reacts to
this high-frequency price signal, less (fossil fuel-based) capacity is needed as backup facilities,
and, therefore, the overall system cost decreases. Hence, getting a reliable estimate for the
elasticity of demand is essential for efficient and reliable system planning. Furthermore, the
application models data using high-frequency time series, increasingly available for economic
studies (Webel, 2022). These data differ from classical macroeconomic time series by ex-
hibiting high autocorrelation and seasonal correlation, making it crucial to consider dynamic
effects, and allowing numerous lagged terms to be included in the conditioning set without
sacrificing analytical robustness.

Related literature. There is an ongoing discussion about whether (and if so, how) causal
graphs can help to solve problems in economics. Proponents argue that causal graphs rep-
resenting structural causal models (SCMs) allow for the derivation of valid non-parametric
estimators in a transparent and straightforward manner (Spirtes, Glymour, and Scheines,
2000; Pearl, 2009; Pearl and Mackenzie, 2020; Hünermund and Bareinboim, 2023), as exem-
plified by the derivation of the instrumental variable estimator by Wright (1928) for the price
elasticity of demand for vegetable oil via graph-based path analysis.1 Opponents point out
that their utility is limited to problems that can be expressed in terms of acyclic graphs and
argue that this precludes a broad class of econometric problems represented by simultaneous
equations such as textbook examples of supply and demand. They further argue (see, e.g.,
Imbens, 2020) that using causal graphs does not solve problems that could not be solved using
alternative frameworks such as the potential outcomes framework (Neyman, 1923; Holland,
1986; J. D. Angrist, Graddy, and Imbens, 2000; Rubin, 2005; J. Angrist and Pischke, 2009).

Despite the debate, graphs representing structural equations are not alien to econometrics,
especially not to identification in time series. For example, Tinbergen (1940) and Wold (1964)
have graphically represented causal dependencies between variables in economic models over
time, using what they call ‘arrow scheme’. Arguably, they have not been widely adopted, as
they were inherently tied to what Wold (1964) coined the ‘causal chain model’, which posits
that economic processes are recursive. In this context, recursive means that each variable of
the system depends unidirectionally on the preceding variables in a sequential manner. The

1See Cunningham (2021) for a historical account of the derivation of the estimator.
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arrow schemes thus conflict with the prevailing notion that economic systems are generally
in equilibrium and should be modeled using simultaneous equations (see, e.g., Christ, 1994),
where variables are determined jointly and can influence each other simultaneously. Our
approach is different as it proposes an acyclic representation of a system at equilibrium.

Causal time graphs also speak to the literature on identifying dynamic causal effects in
macroeconomic time series. Macroeconomic applications focus on estimating dynamic causal
effects, known as impulse response functions at different horizons h, that is, the response of
a (macro)economic system at time t+h to a shock at time t. A recent and popular approach
for identification is to use a local projection IV estimator (Jordà, Schularick, and Taylor,
2015; Ramey and Zubairy, 2018; Stock and Watson, 2018), which is essentially a sequential
multivariate IV regression to identify the effect of price on demand at different time horizons,
i.e., of Pt → Dt, Pt → Dt+1, · · · , Pt → Dt+h. The lag-augmented local projection IV esti-
mator (Plagborg-Møller and Wolf, 2021; Montiel Olea, Plagborg-Møller, et al., 2024) can be
represented in the CIV-notation (see estimator #4 in Section 3). The conditional IV criteria
provide a means to decide its validity: they offer a non-parametric proof in settings where
local projection IV is consistent and motivate an example in which it is not (see Section 3.2).
Furthermore, the graph-based analysis provides a straightforward explanation for recent find-
ings in this literature, such as the relevance of the lead-lag exogeneity of the instrument (Stock
and Watson, 2018), and the robustness to model misspecification (Plagborg-Møller and Wolf,
2021; Montiel Olea, Plagborg-Møller, et al., 2024).

Hence, formulating the problem of estimating the elasticity of demand using causal time
graphs allows us to use simple, graphical criteria to determine which IV-based estimators
are generally consistent and to avoid biases introduced by neglecting the time dependencies.
Thus, we believe that this paper demonstrates the value of using graphs in econometrics.

2 Causal Representation of Autocorrelated Equilibrium Sys-
tems

This section links the economic equilibrium model of autocorrelated price and demand with
structural causal models (Spirtes, Glymour, and Scheines, 2000; Pearl, 2009; Peters, Janzing,
and Schölkopf, 2017) and (causal) graphical models (Lauritzen, 1996; Spirtes, Glymour, and
Scheines, 2000; Pearl, 2009) in the context of time series data (e.g., Peters, Bauer, and Pfister,
2022).

We propose a formalization of the equilibrium relationship that models the system of
simultaneous equations as a system with time-instantaneous hidden confounding between
price and demand. It serves both as an observational model and as an interventional model
(Peters, Bühlmann, and Meinshausen, 2016) considering interventions on the instrument
(here wind) and price but not on demand. The formalization allows for a straightforward
representation as a marginalized graph without cycles, a directed acyclic graph (DAG).

Section 2.1 introduces the general procedure by applying it to a model that postulates that
demand is generated by an autoregressive process in which the current demand structurally
depends on current prices and the immediate past of demand, i.e., demand features a direct
structural autocorrelation (see Equation (1)). In Section 2.2 we introduce two alternative
models with different assumptions on the intertemporal structural relations. Each model

4



ELASTICITIES WITH GRAPHS

generates a time series of autocorrelated demand (see the simulations in Section 4), but they
have different implications for the validity of conditional instrumental variable estimators (see
Section 3). While we do not claim that these three models are an exhaustive representation of
possible demand structures (see Hendry, 1995, chapter 7 ), each of them builds on plausible
assumptions (see, for example, the discussion on electricity markets in Section 5).

2.1 Equilibrium System with Inertial Demand (Model I)

We first model demand as a structural equation, where current demand Dt depends struc-
turally on the price Pt, past demand Dt−1 (we refer to this dependence as direct structural
autocorrelation or simply structural autocorrelation), and an i.i.d. error term UD

t . Assuming
linearity, the demand equation then reads

Model I: Dt := D0 + βPPt + βD1Dt−1 + UD
t . (1)

Here, βP is the slope of the demand equation and the causal (or structural) parameter of
interest.

Similarly, for all t ∈ Z we assume for supply St:

St := S0 + γPPt + γWWt + US
t , (2)

where Wt is exogenous, U
S
t is an i.i.d. error term, and γP is the slope of the supply equation.

The structural equation of Wt does not depend on Pt and is independent of US
t and UD

t .

At equilibrium, demand equals supply, and the equilibrium price clears the market. This
yields a structural constraint, the equilibrium condition for Pt: for all t we have

St = Dt. (3)

The demand and supply equations (1) and (2) are structural in (Pt, Dt−1) and (Pt,Wt),
respectively, in that they hold under interventions on these variables. Using the notation
of potential outcomes (Neyman, 1923; Rubin, 2005; Imbens and Rubin, 2015; Hernan and
Robins, 2020) we can equivalently write them in the form Dt(p) := D0+βP p+βD1Dt−1+UD

t

and St(p, w) := S0+γP p+γWw+US
t , where for fixed realisations of US

t and UD
t , the quantities

Dt(p) and St(p, w) denote the potential outcomes of demand and supply at time t for p and
p and w, respectively.

From the structural equations for demand (1) and supply (2), and the equilibrium con-
straint (3) we get the following expression for prices at equilibrium:

Model I: Pt =
S0 −D0

βP − γP
+

γW

βP − γP
Wt −

βD1

βP − γP
Dt−1 +

US
t − UD

t

βP − γP
, (4)

where we assume that βP − γP ̸= 0, a prerequisite of market clearing.

To construct estimators for βP , we exploit that the equations for demand and price,
together with the equations for Wt and UD

t form a structural causal model (SCM) (Pearl,
2009; Bongers et al., 2021) or, more precisely, an adaption of an SCM which allows for
time series models (Peters, Janzing, and Schölkopf, 2013; Peters, Bauer, and Pfister, 2022).
(As an SCM, the system then allows for a graphical representation, with respect to which

5
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the distribution satisfies the Markov condition (Pearl, 2009; Lauritzen et al., 1990).) In
short, here, an SCM is a set of structural equations Xj

t := f j(PA(j, t), ϵjt )), j ∈ {1, . . . , d},
where PA(j, t) are the parents of Xj

t and ϵjt , t ∈ Z, j ∈ {1, . . . , d}, are jointly independent
random error variables. In the example of Model I, when choosing Dt to be X1

t , we have
PA(1, t) = (Pt, Dt−1, U

D
t ) and, when choosing Pt to be X2

t , we get PA(2, t) = (Wt, U
D
t , Dt−1).

We provide a formal mathematical introduction to structural causal models for time series
in Appendix A.1.

The SCM models the observed distribution and intervention distributions, where we in-
tervene on Wt and Pt; interventions on Dt are not modelled even though Dt−1 appears in
the price Equation (4) – the reason is that we have used (1) in deriving (4).2 In this sense,
the price equation is not structural in Dt. Thus, here, we use SCMs to construct consistent
estimators and not to model all causal relationships. Using an SCM to model interventions
on some but not all variables is similar in spirit to the decision-theoretic framework by Dawid
(2021).

Importantly, as a result of the equilibrium constraint, the variable UD
t appears in both

the demand and price equations, yielding a confounder between price and demand. Since
UD
t is unobserved in practice, we have thus transformed a system of equilibrium relationships

into a system with a hidden confounder UD
t between Pt and Dt.

We now represent the structure of the SCM as a directed acyclic graph (DAG) G; each
variable in the SCM corresponds to a vertex in the graph, and vertices in the graph are
connected by directed edges. More precisely, we connect two nodes u and v by a directed
edge from u to v if u is a causal parent of v. When we construct a graph of a time series, we
obtain a full time graph GFT .

3 Connecting the different steps above, the structural causal
model defined by the equations (1)–(4) and Wt = βWWt−1 + UW

t induces the marginalized4

DAG shown in Figure 2.

2.2 Alternative Demand Equations

We now present two alternative models that can also generate autocorrelated time series
but with different structural dependencies in time. First, Model II (heterogeneous demand)
assumes that aggregate demand consists of two types: the first, At, is price-sensitive but
not directly structurally dependent on its own past, and the second, Bt, is price-insensitive
and exhibits a direct structural dependency in time. In the case of electricity markets,
this distinction by price sensitivity can be motivated by the fact that a part of demand is
not exposed to high-frequency price fluctuations, such as retail consumers without real-time
pricing. The corresponding structural equations read

Model II: Dt := At +Bt = (A0 + βPPt + UA
t ) + (B0 + βB1Bt−1 + UB

t )

= D0 + βPPt + βB1Bt−1 + UD
t ,

(5)

2For example, if we were to consider an intervention on Dt and set it to x, we would obtain the price
equation Pt = (x− S0 − γWWt − US

t )/γ
P .

3Appendix A.2 formally introduces directed acyclic graphs for time series.
4To simplify visualization, the marginalized DAG omits unobserved variables. Figure 11 in Appendix A.3

shows the non-marginalized graph without any dependencies in time. With respect to the operations we
perform in this work, both versions of the graphs are equivalent; see also Richardson (2003).

6
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Wt + 1WtWt 1Wt 2
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Wt 3
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Dt 3

Model I: Inertial Demand

Figure 2: (Marginalized) graphical representation of Model I representing an inertial demand
equation given by the structural equations (1) and (4). The causal effect of interest is high-
lighted in red: the effect of price on demand Pt → Dt. The equilibrium constraint that supply
equals demand results in bidirected edges Pt ↔ Dt. The blue path highlights why a naive IV
estimator using Wt as an instrument generally fails to estimate the magnitude of Pt → Dt

consistently: it does not account for the confounding Wt ←Wt−1 → Pt−1 → Dt−1 → Dt (see
also Section 3).

where D0 := A0 +B0 and UD
t := UA

t + UB
t . The price equation becomes

Model II: Pt =
S0 −D0

βP − γP
+

γW

βP − γP
Wt +

βB1

βP − γP
Bt−1 +

US
t − UD

t

βP − γP
. (6)

Figure 3 (left) depicts the corresponding graph. Second, Model III introduces another type
of time dependence. In a high-frequency time series, we expect a potential for demand opti-
mization over time because consumption shortly before t may be a substitute for consumption
at time t. Consumers may respond to price differentials and shift their demand over time,
such as deferring charging an electric vehicle. Figure 3 (right) shows a simplified cross-price
elasticity in response to the realization of the price at time t−1. The corresponding equations
are

Model III: Dt := D0 + βPPt + βP1Pt−1 + UD
t (7)

and

Model III: Pt =
S0 −D0

βP − γP
+

γW

βP − γP
Wt +

βP1

βP − γP
Pt−1 +

US
t − UD

t

βP − γP
. (8)

3 Graph-based IV Estimation in Equilibrium Models

Next, we discuss sufficient conditions for valid instrumental variable (IV) estimation in equi-
librium systems with a time series structure (Section 3.1). To do so, we exploit graphical
conditions for validity of conditional IV (CIV) estimators (Brito and Pearl, 2002; Henckel,

7
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Model II: Partially responsive demand
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Dt + 1DtDt 1Dt 2

Wt 3

Pt 3

Dt 3

Model III: Demand shifting

Figure 3: (Marginalized) graphical representation of alternative demand equations. Left:
Model II (Partially Responsive Demand): Aggregate demand can be divided into two types
as in (5), one being price-exposed and not autocorrelated, one not exposed to prices and with
inertia. Richt: Model III (Demand shifting): Demand depends on the price in two time steps,
current and lagged, as in (7). Thus, the model assumes that processes or systems can be
shifted in time, similar to a simplified representation of a cross-price response. The blue path
highlights why a naive IV estimator fails to estimate the causal effect from price on demand
in the presence of cross-price elasticity (CIV1) is violated, see Section 3); by contrast, the
orange path does not yield a similar violation.

Buttenschoen, and Maathuis, 2023), which have recently been extended to time series set-
tings (Thams et al., 2022). In Section 3.2 we apply these CIV principles to the three models
introduced in Section 2 and present several valid CIV estimators. We argue that discrepan-
cies between them can inform researchers about the validity of the underlying models and
assumptions.

3.1 Conditional IV Estimation in Time Series

For constructing valid estimators we make use of the concept of d-separation (short for
directed separation) (Pearl, 2009). D-separation is a purely graphical criterion connected to
conditional independences of random variables via the Markov condition (Lauritzen, 1996).
Pearl (2009)’s original formulation considers finite graphs; here, we use a version that is
adapted to (marginalized) infinite time series graphs.

Definition 3.1 (Pearl’s d-separation (Pearl, 2009)). Let G be the marginalized version of
an acyclic directed full time graph (Peters, Janzing, and Schölkopf, 2013), which contains a
node for each variable and time point, with vertices5 V = Z × {1, . . . , d}, and let i1, . . . , im
be a path between vertices i1 and im in G. We say that the path i1, . . . , im is blocked by the
set of variables S ⊆ V \ {i1, im} if there exists k ∈ {2, . . . ,m− 1} such that either

(i) ik ∈ S and ik is not a collider on the path i1, . . . , im, or

5Here the Z component encodes time, e.g., Dt is a vertex denoted as (t, 1).

8
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(ii) ik is a collider6 on the path and ({ik} ∪DE(ik))∩ S = ∅, where DE(ik) are the descen-
dants of ik;

if a path is not blocked by S, we say it is unblocked, given S. For three mutually disjoint
sets of vertices A,B, S ⊂ V , we say that A and B are d-separated by S if all paths between
A and B are blocked by S. If this is the case, we write

A ⊥⊥G B | S.

The concept of d-separation helps us to construct valid IV estimators in time series. The
following statement is an adapted version of Theorems 5 and 8 of Thams et al., 2022. Let
d, d′ ∈ N, d ≤ d′ and let V ′ = Z × {1, . . . , d′}. Consider a linear SCM for time series over
variables XV ′ and let G be the induced marginalized version of an acyclic directed full time
graph with vertices V = Z × {1, . . . , d}. Let7 I,X ,B, {Y } ⊆ V have zero means and finite
second moments and let β ∈ R|X | be the causal coefficient with whichXX enters the structural
equation for XY , that is,

XY = βTXX + γTXK + ϵY , (9)

for some variables XK ⊆ XV \ XX (some of the components of β can be zero, so not all
variables in XX have to be parents of XY ).

One then considers the following three requirements on I,X ,B and Y , the CIV criteria:

(CIV1) I and Y are d-separated given B in the graph GX ̸→Y , which denotes the graph obtained
when removing all direct edges from X to Y from G.

(CIV2) B is not a descendant of X ∪ {Y } in G.

(CIV3) the matrix E[cov(XX , XI |XB)] has rank |X |, that is, full row rank.

(CIV1) and (CIV2) are properties of the underlying causal graph, (CIV3) is a property of
the induced distribution.

Assume we have observations at time points 1, . . . , T . If an estimator is based on I,X ,B
such that requirements (CIV1), (CIV2) and (CIV3) are met, we call it a valid CIV estimator.
In this case,

β̂ := argmin
b
∥ ˆcov(XY − bTXX , XI |XB)∥, (10)

is a consistent estimator for β if T → ∞ (for a detailed definition of β̂ and its closed form
solution see Appendix B). We call β̂ the conditional instrumental variable (CIV) estimator
and denote it by CIV(I | X → Y | B).

If at least one of the conditions is not met, then we call the estimator invalid and, in
general, it may not be consistent (Henckel, Buttenschoen, and Maathuis, 2023) (but excep-
tions exist). In the special case, however, that (CIV1) and (CIV2) are satisfied but (CIV3) is
not (this is related to weak instrument settings), any estimation technique that comes with
valid inference yields unbounded confidence sets containing the true causal effect with large
probability. In this sense, it is therefore not necessary to test for the validity of (CIV3).

6Let G be a marginalized version of an acyclic directed full time graph with vertices V . For such graphs
we define v to be a collider on a path whenever two consecutive edges have arrowheads at v (for example,
u1 ↔ v ← u2).

7Depending on the context, and slightly overloading notation, XS for S ⊆ V is either the set random
variables {Xs | s ∈ S} or the random vector (Xs1 , . . . , Xsn), where si are in lexicographic order.
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3.2 Consistent Estimation of Price Elasticities

We now apply the CIV criteria to derive valid estimators for the Models I–III presented
in Section 2. For example, consider Model I from Section 2.1. The model is described by
Equations (1) and (4), and the corresponding marginalized time graph in Figure 2. The
naive IV estimator #1 that neglects time dependencies can be written as CIV(Wt | Pt →
Dt | ∅), that is, we set XX = (Pt), XY = {Dt}, XB = ∅ and XI = (Wt). We see that
(CIV1) is not satisfied: After removing the edge Pt → Dt in Figure 2, we obtain the graph
GPt ̸→Dt . In this graph, there are several unblocked paths given ∅ through Wt−1 that connect
the instrument Wt to the dependent variable Dt. An example is the blue path in Figure 2,
Wt ←Wt−1 → Pt → Dt−1 → Dt, given XB = ∅. Wt is therefore not d-separated from Dt.

We provide an overview of some available estimators and their validity in Table 1. We
group CIV estimators along two main concepts. The first approach uses a selection of path-
blocking variables as the conditioning set. Such a conditioning set can contain past realiza-
tions of the instrument Wt, the endogenous variable Pt, or the outcome variable Dt. For
example, the estimator #3 CIV(Wt | Pt → Dt | Dt−1) contains only one lag of the out-
come variable; it is valid for Model I. The estimator #2, CIV(Wt | Pt → Dt | {Wt−s}Ls=1),
contains L lags of the instrument and is valid for Models I–III. Intuitively, by including the
past realizations of the instrument in the conditioning set, we block the path starting with
Wt ← Wt−k for some k ≥ 1. The estimator #2 is valid under a strictly more general model
class: for example, it is even valid for any model yielding a (marginalized) graph, in which
Pt → Dt is the only directed path between Pt and Dt, and the set of parents of Wt is a subset
of {Wt−1, . . . ,Wt−L}. This model class contains Models I, II, and III. We therefore consider
#2 our benchmark estimator. The second approach relies on the concept of simultaneously
estimating nuisance effects. Estimator #8, CIV({Wt−s}Ls=0 | (Pt, Pt−1, Dt−1) → Dt | ∅), for
example, adds two additional nuisance covariates to X . It estimates a three-dimensional
effect and later ignores two of its components.

Estimator Model I
Figure 2

Model II
Figure 3
(left)

Model III
Figure 3
(right)

Naive IV
#1 CIV(Wt | Pt → Dt | ∅) ✗ ✓ ✗

Conditional IV
#2 CIV(Wt | Pt → Dt | {Wt−s}Ls=1) ✓ ✓ ✓

#3 CIV(Wt | Pt → Dt | Dt−1) ✓ ✗ ✗

#4 CIV(Wt | Pt → Dt | {Wt−s, Pt−s, Dt−s}Ls=1) ✓ ✓ ✓

Nuisance IV
#5 CIV({Wt−s}Ls=0 | (Pt, Dt−1)→ Dt | ∅) ✓ ✓ ✗

#6 CIV({Wt−s}Ls=0 | (Pt, Pt−1)→ Dt | ∅) ✗ ✓ ✓

#7 CIV({Wt−s}Ls=0 | (Pt, Pt−1)→ Dt | Dt−1) ✓ ✗ ✓

#8 CIV({Wt−s}Ls=0 | (Pt, Pt−1, Dt−1)→ Dt | ∅) ✓ ✓ ✓

Table 1: Estimators and their validity for the causal effect βP from Pt → Dt for Models I–III
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Wt + 1WtWt 1Wt 2

Pt + 1PtPt 1Pt 2

Dt + 1DtDt 1Dt 2

Wt 3

Pt 3

Dt 3

a) I.i.d. instrument ( W = 0)

Wt + 1WtWt 1Wt 2

Pt + 1PtPt 1Pt 2

Dt + 1DtDt 1Dt 2

Wt 3

Pt 3

Dt 3

b) No dir. str. autocor ( D1 = 0)

Wt + 1WtWt 1Wt 2

Pt + 1PtPt 1Pt 2

Dt + 1DtDt 1Dt 2

Wt 3

Pt 3

Dt 3

c) No price response ( P = 0)

Figure 4: Graphical representation of special cases of Model I, for which naive IV is a valid
estimator. Left: The instrument is i.i.d. i.e., not autocorrelated. Middle: The demand
function is not autocorrelated. Right: The demand is not responsive to prices.

Special cases for a valid naive IV estimator. Even though the naive IV estimator does
not necessarily satisfy (CIV1), there are special cases in which the naive estimator is valid,
as visualized in Figure 4. These occur i) when the instrumental time series is i.i.d., or ii)
when demand is not directly affected by its past realizations, or iii) when there is no response
to prices, i.e., β = 0. In all three cases, no unblocked path exists (given ∅) from Wt to Dt

through the past.

Local Projection IV Estimator. Estimator #4 in Table 1 is the lag-augmented local
projection IV estimator8 from the macroeconomic literature on identifying impulse response
functions (Stock and Watson, 2018; Montiel Olea and Plagborg-Møller, 2021). In CIV nota-
tion, the local projection IV estimator for the time horizon h = 0, i.e., the effect of Pt → Dt,
can be written as CIV(Wt | Pt → Dt | {Wt−s, Pt−s, Dt−s}Ls=1); thus, the local projection IV
estimator is a special case of a CIV estimator with lags of the instrumental, endogenous,
and dependent variable in the conditioning set, since it also relies on the concept of blocking
path to achieve validity. To achieve validity, however, including the lags of the instrument
would be sufficient (see estimator #2). If, however, in Model I, there is additional hidden
confounding between Wt and Pt−1, and Dt and Pt−1, #4 is invalid, while #2 would still be
valid. Estimator #2 is valid across a larger model class.

Model validation. The existence of several valid IV estimators allows us to learn about
the structure of the demand response. We can assume a particular structure of the demand
equation, but we do not know ex-ante whether this assumption holds. The ability to derive
multiple supposedly valid estimators for a structural model can be used to test this assump-
tion. For example, if Model II describes the true time dependencies, the confidence intervals
of all estimators but number #3 in Table 1 should overlap with high probability. This can be
tested from observational data. If the confidence intervals do not overlap, one should reject
Model II.

8The general formulation of the local projection IV estimator includes lags up to infinity (see e.g., Montiel
Olea and Plagborg-Møller, 2021, chap. 3.3), which in practice translates into a ’large number of lags‘, which
we represent by L.
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4 Simulating electricity market data

We now evaluate the CIV estimators of Section 3.2 in a controlled environment motivated by
the German electricity market (see Section 5). We empirically quantify the bias that arises
when using invalid estimators and compare the empirical performances of the CIV estimators
(including nuisance IV estimators). We also show that the autocorrelation of the response
time series does not suffice to correct for the bias of invalid estimators.

Data generation. We generate multiple datasets containing three hourly time series: a
supply-shifting instrumental time series, wind generation9, the equilibrium electricity de-
mand,10 and the equilibrium electricity price. We model wind generation as an AR(L) process
with autocorrelation coefficients derived from observed wind generation data in Germany in
2019 (see Appendix D.1 for data sources). The supply equation corresponds to Equation (2)
with γP = +500 MW/(EUR/MWh). It is parameterized so that every unit of generated
wind electricity is immediately offered to the market (γW = 1). The constant S0 = 25, 000
MWh/h implies that there is supply even if prices drop below zero, a typical characteristic of
real-world electricity markets. The errors US

t are i.i.d. N (0, 1). Finally, we equate the supply
and the model-specific demand equation (Equation (1), (5) or (7)) to obtain hourly equilib-
rium prices and quantities. Unless otherwise specified, the demand equation is parameterized
as follows: the own price elasticity is βP = −100 MW/(EUR/MWh), the error terms of the
demand equation are i.i.d. N (0, 2000), and the constant of the demand series D0 is chosen
so that the resulting demand is stationary around the mean value of German electricity load
(approximately 60 GWh/h).

CIV estimation. All CIV estimators are calculated with the Python package linearmodels
(Sheppard and al., 2024), using the kernel correction for heteroscedasticity and autocorrela-
tion robust errors (HAC).

Validity of estimators. We validate the theoretical findings of Section 3. In Figure 5, we
apply the CIV estimators specified in Table 1 to the data simulated from Model I.11 We find
that the confidence sets of all valid estimators overlap (compare the overlap of the confidence
intervals with the check marks for Model III on the right of Figure 5). Conversely, if one
had assumed Model II, one would be forced to reject the associated structural assumptions
since estimators #1 and #6 deviate from other valid estimators (e.g., #2 and #8). The
simulation thus underscores our argument that comparing the overlap of several presumably
valid estimators provides a means of rejecting incorrect structural assumptions.

Magnitude of bias. We quantify the bias caused by ignoring any direct structural auto-
correlation. In linear SCMs, the bias (explicitly computed by Thams et al. (2022, Prop. 17,
for a special case)) depends on the path coefficients along unblocked paths (which may be
unblocked due to wrongfully including descendants of colliders in the conditioning set). Fig-
ure 6 shows the empirical percentage error of the naive IV estimator #1 applied to estimate

9For a discussion on wind generation being a valid instrument see Section 5.
10In the electricity market, equilibrium demand is also referred to as load or electricity consumption.
11Appendix C provides simulation results for Models II in Figure 16 and for Model III in Figure 17.
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Figure 5: CIV estimates β̂P of the true demand response βP = −100 MW/(EUR/MWh)
when data is simulated based on Model I (Figure 2). The structural autocorrelation of
demand is βD1 = 0.7. The columns on the right indicate the validity according to the CIV
criteria (see Table 1).

the demand response for data generated from Model I. We vary the direct structural auto-
correlations of the instrumental time series (βW ) and the demand series (βD1). For low levels
of instrument autocorrelation (βW < 0.2), ignoring time dependencies leads to a moderate
bias (< 20%). However, the resulting bias is substantial for high-frequency time series. For
example, in real-world data (see Section 5), the autocorrelation of wind generation (at lag 1)
can have values above 0.9. Hence, even for small levels of direct structural autocorrelation of
demand, this could lead to a bias of more than 25%. We observe the same pattern for other
combinations of models and invalid estimators (see Figure 12).

Structural vs. observed autocorrelation. Knowing the observed autocorrelation of
the demand is not sufficient for correcting for the bias of the naive IV estimator #1. In
Figure 7, we plot the percentage error of estimator #1 against the observed autocorrelation
of demand (which we denote by αD1 to distinguish it from the structural autocorrelation
denoted by βD1). The intensity of the color indicates the value of the respective structural
coefficients. The figure shows that the same level of observed autocorrelation (at lag one)
can result from different structural dependencies, yielding different estimation errors. Low
levels of observed autocorrelation can result in a substantial bias of 100% (e.g., Model III at
αD1 ≈ 0.2), and observed autocorrelation up to αD1 ≈ 0.9 can be associated with no bias
at all if the data is generated by a different model (e.g., Model II). Consequently, knowing
the observed autocorrelation of demand (at lag one) is insufficient for deriving a structural
model or predicting a bias.

Empirical performance of different CIV estimators. We analyze the empirical perfor-
mance of the three CIV estimators that are valid across a wide class of models: the nuisance
IV estimator #8, the CIV estimator #2, and the CIV estimator #4, which corresponds to a
lag-augmented local projection IV estimator. We do so based on three indicators: Coverage,
which indicates how often the 95%-confidence interval of β̂P contains the true value βP ; aver-
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Figure 6: Isolines showing the average absolute percentage error of the point estimate as a
function of the structural autocorrelation of wind (instrument) and the structural autocor-
relation of demand (dependent variable). For the simulations, we divide both axes into ten
equidistantly spaced autocorrelation coefficients between 0 and 1 each, based on which we
run 20 simulations with five years of data (T = 43, 800).

0.0 0.2 0.4 0.6 0.8 1.0
observed autocorrelation of demand D1

300

200

100

0

100

200

300

pe
rc

en
ta

ge
 e

rro
r

#1 CIV(Wt|Pt Dt| )

Model I Model II Model III

Figure 7: The percentage error of the naive IV estimator #1 is shown as a function of
the observed autocorrelation of demand (αD1). In each simulation we vary the structural
dependencies: In Models I and II, the strengths of the structural autocorrelations, βD1 and
βB1, are both varied between −0.25 and 0.99. In each simulation we vary the structural
dependencies: In Models I and II, the strengths of the structural autocorrelations, βD1 and
βB1, are both varied between −0.25 and 0.99. In Model III, βP1 is varied between −250
MW/(EUR/MWh) and +250 MW/(EUR/MWh). The color intensity increases in tandem
with the aforementioned ranges. For each model, we conduct 400 simulations with a sample
period of five years (T = 43, 800).
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Figure 8: Evaluation of the statistical performance of conditional vs. nuisance IV estimators
for Model I based on the performance indicators: (left) coverage, (middle) the average ab-
solute percentage error, and (right) the length of the confidence interval. (βD1 = 0.9.) The
shaded areas represent the 95% confidence intervals. For each year, we run 50 simulations.

age absolute percentage error, which averages 100 · |β̂P − βP |/|βP | over different simulations;
and the length of the confidence interval.

Figure 8 plots the indicators as a function of the sample size for data generated from
Model I. All estimators have coverage (left), confirming these approaches’ validity. However,
the nuisance IV estimator #8 has a smaller average absolute percentage error (middle) and
yields shorter confidence intervals at smaller sample sizes (right) than both the conditional
IV estimators of the most general class, #2, and the lag-augmented local projection IV
estimator, #4. The benefit of having a large sample size becomes marginal beyond five years
but holds regardless of the structural model (see Figure 14 and Figure 15). Thus, while the
estimators that rely on blocking the blue path in Figure 2 by conditioning, #2 and #4, are
conceptually simple and retain validity across a large class of models, the estimator that relies
on estimating nuisance effects, #8, in the above setting outperforms them, thereby providing
a useful alternative for smaller sample sizes.

5 Estimation of the Price Elasticity of Hourly German Elec-
tricity Demand

We estimate the own-price elasticity of the aggregate German electricity demand using the
CIV estimators derived in Section 3. Furthermore, we discuss what the divergence between
the estimators can reveal about the structure of the dynamic response.

Price elasticity of electricity demand. Historically, electricity demand was considered
inelastic, and power plants adjusted their supply according to whatever demand occurred
(Borenstein, 2002; Cramton, Ockenfels, and Stoft, 2013). Liberalization, digitalization, and
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decarbonization over the last three decades have started to change that. After liberalization,
it soon became clear that a low elasticity of demand inflates the ability of producers to abuse
market power, and policymakers took measures to promote more flexible customer behavior,
e.g., by increasing the exposure of consumers to real-time pricing (Borenstein, 2002; Fabra
et al., 2021). In addition, as the role of wind and solar expands globally, price volatility
increases, and the benefits of flexible demand become larger (Ciarreta, Pizarro-Irizar, and
Zarraga, 2020; Maniatis and Milonas, 2022; Hosius et al., 2023). Policy scenario and system
planning studies assume future demand to be increasingly price-elastic (e.g., ACER, 2020).
Therefore, an accurate estimate of the price elasticity of electricity demand is important for
reliable system planning and appropriate policy decisions.

The electricity market. The electricity system must always be in balance for physical
reasons. The primary mechanism to equalize demand and supply is the day-ahead auction
of the wholesale market. This is where generators, retail suppliers, and large industrial
consumers submit their price-volume bids for each hour of the following day.12 Because
electricity storage is expensive and limited in capacity, wholesale electricity prices are much
more volatile than other commodities (Ciarreta, Pizarro-Irizar, and Zarraga, 2020; Maniatis
and Milonas, 2022; Hosius et al., 2023).

Data. We estimate the own-price elasticity on electricity market data between October
23, 2017, and December 31, 2020 (see Table 2 for summary statistics). Electricity de-
mand in megawatt-hours per hour (MWh/h) is defined as consumption in the joint German-
Luxembourg market. The electricity price in Euro per megawatt-hour (EUR/MWh) corre-
sponds to the clearing price of the day-ahead auction on EPEX Spot, the largest marketplace
for the market zone. Wind generation is in gigawatt-hours per hour (GWh/h). A detailed
description of the data and sources can be found in Appendix D.1. Whenever we exclude
hours and/or split the data set, we determine the relevant lags and then perform the split.

Mean Std.
Dev.

Min MedianMax Skew-
ness

Kurto-
sis

Consumption [GWh] 59.9 11.3 34.0 59.5 91.7 0.16 -0.7
Price [€/MWh] 38.0 17.6 -90.0 38.0 200.0 -0.35 3.8
Wind Generation
[GWh]

14.1 10.1 0.1 11.6 46.1 0.87 -0.1

Table 2: Summary Statistics; T = 27, 072 after removing holidays.

Identification. To overcome the endogeneity problem induced by the equilibrium condi-
tion, we use wind power generation as an exogenous time series. Wind speed and wind power
generation are commonly used as supply shifting instruments because they are relevant and
credibly exogenous (Bönte et al., 2015; Knaut and Paulus, 2017; Fabra et al., 2021; Hirth,

12The bid volume does not correspond to aggregate demand, and the bid curves do not correspond to the
demand equation. This is because market participants can submit net bids (pool-based bidding) and have
the option of trading on other marketplaces. Hence, the demand elasticity is not observable but must be
estimated. However, the clearing price is informative about the equilibrium price (Knaut and Paulus, 2017).
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Khanna, and Ruhnau, 2024). The assumption that the structural equation of wind power
generation does not depend on the price of electricity is based on the argument that renewable
generators have marginal costs close to zero. Additionally, most German wind power gener-
ators also receive a subsidy per unit of electricity produced, which induces an opportunity
cost of not producing, even if prices are negative.13

We follow Hirth, Khanna, and Ruhnau (2024) in proposing that wind power is indepen-
dent of the noise terms of demand and supply after conditioning on suitable covariates. While
it is reasonable to assume that wind power does not affect demand in any way other than
through the price of electricity, we expect the existence of common causes such as seasonality
and weather events. We therefore condition on the following covariates: seasonal dummies
(hour of the day, day of the week, and month of the year) and weather controls (sunlight, and
heating and cooling degrees). Furthermore, we include other covariates to increase the preci-
sion of the estimate, namely commodity prices (natural gas, coal, and emission allowances),
solar PV generation, and other calendar controls (school vacations by state and a variable
for the last week of the year).

In Models I–III, we assume Wt to have a structural autocorrelation of on lag, and in that
case, for many of the estimators, including a single time lag suffices. However, observed wind
power exhibits a higher degree of autocorrelation (see Figure 18), which needs to be reflected
in the construction of the different estimators (the argument remains the same). Given the
observed autocorrelation pattern, we include up to 50 lags of wind power generation in the
conditioning set of the CIV estimator #2 and #4, and as instruments for the nuisance IV
estimators #4 to #8. We also observe a significant autocorrelation pattern in the demand
time series (this is expected if there is indeed a causal effect from wind power generation on
demand, but it may have other sources, too).

Models of electricity demand. Electricity demand features two main mechanisms that
can imply structural correlations in time (for a comprehensive classification of demand re-
sponse in the electricity market, see Albadi and El-Saadany, 2008). First, some electricity-
consuming processes run for extended periods and cannot be switched on and off by the
hour. This includes many industrial activities spanning an entire work shift and residential
activities such as washing machines with multi-hour programs. Therefore, it is likely that the
demand at time t depends on the load of the previous hours, as in our Model I. Second, some
electricity-consuming processes can be shifted in time to exploit power price differentials.
Such ‘load shifting’ may be done by scheduling industrial processes during low-price hours
and by postponing charging electric vehicles, for example. Model III represents a simplified
version of the shifting dynamic, where demand Dt also depends on the lagged price Pt−1.

Our alternative demand Model II assumes that processes or systems can be divided into
two types: one that is price-exposed and reacts instantaneously and one that is inertial and
not exposed to price variations. This model is motivated by the observation that most retail
consumers are not exposed to real-time prices and that only the remaining consumers can
respond to prices. For simplicity, we assume that these remaining consumers can regulate
their processes individually for each hour.

13Negative prices represent approximately 2.5 percent of the observations. If wind generators stopped
producing at negative prices, this would indicate that the instrument is not valid for that price range. However,
we also observe wind generation at negative prices.
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Additional assumptions about the demand equation. The models we consider make
additional assumptions about the demand response. First, they posit that the functional form
of the resulting demand equation depends linearly on price. To show that dynamics matter
irrespective of the functional form, we include results for the assumption of an exponential
relationship in Figure 914. Second, the models assume that the elasticity is constant across
hours and seasons. This implies that consumers who are active during the day have, on
average, the same elasticity as consumers who are active at night. We investigate the relevance
of this assumption in more detail in a robustness analysis in Appendix D.2.

Quantitative results. Figure 9 gives the quantitative results. The CIV estimators #2
and #4, and the nuisance IV estimator #8, which are valid across a large model class,
have overlapping confidence intervals. All three estimate a linear demand response β̂D of
approximately −200 MW/(EUR/MWh).15 The log-log specification yields a unitless estimate
of −0.1.16 An intervention on supply by a quantity similar to the magnitude of one standard
deviation of the instrument, 693 MW,17 leads to a predicted price change of EUR −0.64,18
and thus an increases in the equilibrium quantities of 140 MW.

Overlap pattern. We can also analyze the pattern of the different CIV estimators to
learn about the real-world dynamics of electricity demand response. First, we can reject a
linear model without relevant structural autocorrelation. Figure 9 shows that the pattern of
estimators does not correspond to the pattern that we would expect if real-world dynamics
would not bias a naive estimate: The confidence intervals of the benchmark estimator and
the naive IV estimator do not overlap, for example. Also, we can reject that the observed
autocorrelation in the time series is only caused by an autocorrelation in the residual demand,
as in Model II: the estimators #1 and #5 yield smaller absolute values than estimators #2
and #8 for the own-price elasticity, with non-overlapping confidence sets. Second, our results
indicate that the dynamics of electricity markets are more complex than suggested by the
simple Models I, II, and III because, taken in isolation, none of the models is sufficient to
explain the disagreement between the estimators. Our approach only allows us to falsify
structural assumptions but not to confirm them.

Robustness. As mentioned at the beginning of this section, we make the strong assumption
that the demand elasticity is constant across hours. However, different consumers are active
in the electricity market at other times of the day, resulting in a changing composition of
consumer elasticities. To account for this temporal heterogeneity, Knaut and Paulus (2017)
investigate the level of demand response by the hour of the day, and Hirth, Khanna, and
Ruhnau (2024) additionally analyze heterogeneity by weekday and season. In Appendix D.2,
we provide a robustness analysis that divides the hours into on-peak and off-peak periods
(with lags of the variables extending into the respective other phase as needed). The results

14For the log-log transformation, we exclude prices of zero and below.
15#2 estimates a value of −220, #4 of −183, and #8 of −181. All estimates in MW/(EUR/MWh).
16#2 estimates a value of −0.1, #4 of −0.11, and #8 of −0.08. All estimates are unitless.
17The standard deviation is obtained from the residual time series of wind production, i.e., after being

regressed on the whole conditioning set of estimator #2.
18We obtain the price prediction by multiplying the standard deviation with the first stage coefficient

π̂ = −0.00096 (EUR/MWh)/MW.
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show that the overlap pattern holds primarily for on-peak demand. This period is also when
we would expect the highest demand response, and the quantitative results of the benchmark
estimator #2 are correspondingly higher. In contrast, the structural dynamics during off-
peak periods (i.e., at night) suggest a different dynamic, which could be investigated further
with our proposed method.

Intervention. Causal inference is concerned with predicting the effect of interventions on
a system. β̂D is an estimate of the structural coefficient βD of the demand equation. It
can be interpreted as the demand response to a hypothetical intervention on the equilibrium
price. If βD were indeed −200 MW/(EUR/MWh) and it were possible to reduce the price
by EUR 1, demand would increase by 200 MWh/h (see Figure 10 (middle)). We call this
intervention hypothetical because a direct and isolated intervention on the price only would
yield a market that is out of balance: If one were to set the price to pfix, not only would the
quantity demanded change, but so would the quantity supplied, resulting in an imbalanced
market (S(pfix) ̸= D(pfix)). One may also consider demand or supply shocks that shift
or alter the demand or supply curve. For example, a supply shock that occurs regularly is
changing weather conditions that affect the availability of renewable energy. Figure 10 (right)
illustrates a supply shock that leads to the equilibrium quantities Q. Unlike the example of
a hypothetical intervention on the price, in this scenario, equilibrium quantity and price are
endogenous, ensuring that the market clears.

6 Conclusion

This paper demonstrates the advantages of using directed acyclic graphs to estimate the price
elasticity of demand with autocorrelated instruments. While it is well known that autocorre-
lation can lead to biased estimates, relying solely on observed autocorrelation and statistical
tests can mislead researchers seeking valid estimators. Causal graphs allow us to express
structural assumptions transparently, understand biasing dynamics, derive multiple valid es-
timators, and ultimately test the validity of assumptions about structural dependencies over
time. Suppose economists wish to benefit from causal time graphs. In that case, they can do
so without abandoning the idea of simultaneous determination of supply and demand: equi-
librium relationships can be represented in DAGs similarly to a time-instantaneous hidden
confounding.

The graphical CIV criteria provide two different approaches to valid IV estimators. One
approach blocks paths by including lagged terms in the conditioning set, and the other
simultaneously estimates nuisance effects. While the former is more robust to model mis-
specification, the latter can be more powerful at small sample sizes.

We have applied the above to estimate the own-price elasticity of electricity demand
under three competing structural assumptions: a model in which demand exhibits inertia, a
model in which demand additionally depends on previous prices and a model of heterogeneous
response. We have shown through simulations that each model can manifest identical levels
of observed demand autocorrelation, illustrating that the observed correlation alone cannot
predict potential bias. The estimates diverge when conditional IV estimators are applied to
German electricity demand. This suggests that the widely used IV estimator, which ignores
time dynamics, cannot identify the own-price elasticity without significant bias.
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Looking ahead, the similarity between the CIV estimators derived from causal graphs and
the lag-augmented local projection IV estimator calls for an extension of causal time graphs to
estimate impulse response functions. Causal full time graphs can help strengthen the intuition
behind recent results in this literature. To give just three examples: First, local projection IV
estimators are found to identify the same impulse response function as a vector autoregressive
model with the instrument ordered first (Plagborg-Møller and Wolf, 2021) . Second, local
projection IV is found to be robust to misspecification (Montiel Olea, Plagborg-Møller, et al.,
2024), which could be related to the lag-augmented local projection IV estimator blocking the
same unblocked path multiple times. Third, Montiel Olea and Plagborg-Møller (2021) prove
that for a local projection IV estimator, the use of Eicker-Huber-White heteroskedasticity-
robust standard errors is sufficient without further needing to correct for autocorrelation. This
result could be because the lagged terms in the conditioning set already sufficiently account
for structural and, hence, bias-inducing autocorrelation. Going beyond recent findings, the
graphical approach would further provide nonparametric proof, and the CIV criteria allow
for a transparent analysis of the validity of the local projection IV estimator under hidden
confounding.

Thus, as this paper has shown, the graphical approach is a powerful addition to the toolkit
of every economist working with data structured as a time series, with many applications yet
to be explored.
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A Causal Models for Time Series

This appendix provides a formal introduction to causal inference for time series. First, we give
a formal definition of structural causal models (SCM), followed by an introduction to directed
acyclic graphs (DAGs) for time series. Finally, we introduce the concept of marginalization,
which is a way to simplify the representation of graphs.

A.1 Structural Causal Models for Time Series

Let {U j
t }t∈Z,j∈{1,...,d} be a set of d jointly independent random error variables. The index t

encodes time, and the index j is the time series component.

For all j ∈ {1, . . . , d} let PA(j) ⊆ {(k, s) | k ∈ {0, . . . , q}, s ∈ {1, . . . , d}} and pj := |PA(j)|
be the number of elements in PA(j), and let f j : Rpj × R → R be a measurable function.
The sets PA(j) encode the (causal) parents of Xj

t , which we assume do not depend on t. For
all j ∈ {1, . . . , d} and all t ∈ Z we consider the structural equations

Xj
t := f j

(
PA(j, t), U j

t

)
, (11)

where the parents of Xj
t are defined by PA(j, t) := (Xs1

t−k1
, . . . , X

spj
t−kpj

) with

{(k1, s1), . . . , (kpj , spj )} = PA(j), where the (ki, si) are in lexicographic order.19

We further assume that there is a unique solution20 to (11) that is weakly stationary
and that the process realization is covariance ergodic. We further assume that the induced
distribution is Markov with respect to the induced graph (see Section A.2). For linear func-
tions f1, . . . , fd, which we consider in this paper, these properties are well-studied (see, for
example, Thams et al., 2022, Theorem 1).

A.2 Directed Acyclic Graphs for Time Series

We now introduce some standard graph terminology (e.g., Lauritzen, 1996; Friedman and
Koller, 2003; Pearl, 2009), adapted to the case of infinitely many nodes. Let V ⊆ Z ×
{1, . . . , d}. A directed graph G = (V,E) is composed of nodes V (also called vertices) and
edges E ⊆ V × V with the restriction that for all u, v ∈ V either (u, v) ̸∈ E or (v, u) ̸∈ E or
both. We sometimes use the notation v → u, meaning that (v, u) ∈ E.

A path in G is a sequence of distinct vertices v1, . . . , vm, such that an edge connects each
consecutive pair of vertices. If vk → vk+1 for all k ∈ {1, . . . ,m − 1}, we say that the path
is directed from v1 to vm. A directed path v1 → ... → vm such that (vm, v1) ∈ E is called a
cycle. A directed graph G is classified as a directed acyclic graph (DAG) if it has no cycles.

Because we deal with time series, the structural equations induce a graph with infinitely
many nodes, i.e., a full time graph (Peters, Janzing, and Schölkopf, 2013) GFT over nodes
V = {(t, s) | t ∈ Z, s ∈ {1, . . . , d}}, where we draw an edge from (t1, s1) to (t2, s2) if
(t1, s1) ∈ PA(t2, s2). We assume that the parent sets are such that GFT is directed and acyclic.
We say v ∈ V is a descendant of u ∈ V if v ̸= u, and there exists a directed path from u to
v. We denote the set of descendants of u by DE(u) := {v ∈ V | v is a descendant of u}.

19This means (k, s) < (v, g) if and only if k < v or (k = v and s < g).
20More precisely, we assume that all solutions induce the same distribution.

25



ELASTICITIES WITH GRAPHS

A.3 Graph marginalization

Graph marginalization has been studied extensively (see, e.g., Verma and Pearl, 1991).
The main idea of graph marginalization is to simplify the graph while keeping the same
d-separation statements over the observed nodes. In the context of this paper, we marginal-
ize out the unobserved error term, which causes the endogeneity of prices and quantities (see
Figure 11). A formal definition of a marginalized time graph is given in Thams et al. (2022),
which, too, consider graphs with infinitely many nodes.

Definition A.1. Consider a full time graph GFT over nodes V = {(t, s) | t ∈ Z, s ∈
{1, . . . , d}}. Let M = {(t1, i1), . . . , (tm, im)} be a finite collection of nodes in GFT. The
marginalized time graph, GM , is the graph over nodes M where for all i, j ∈M there is:

1. a directed edge i→ j if and only if i→ j in GFT or there exists m1 ∈ N, v1, . . . , vm1 /∈M
and a directed path i→ v1 → · · · → vm1 → j in GFT, and

2. a bidirected edge i↔ j if and only if there exist m1,m2 ∈ N, v1, . . . , vm1 , w1, . . . , wm2 ,
U /∈ M in GFT such that there exist directed paths U → v1 → · · · vm1 → i and
U → w1 → · · ·wm2 → j.

B Details of the two-stage-least-squares estimator

Let T ∈ N and let B, I,X and Y satisfy (CIV1) to (CIV3). Assume that we have observations
at time points {1, . . . , T}. Let {(t1, s1), . . . , (tn, sn)} = B, where (ti, si) are in lexicographic
order. Without loss of generality, assume that T ∈ {t1, . . . , tn} and let k := max{|ti−tj | | i, j ∈
{1, . . . , n}}. Define

B :=


Xs1

t1
. . . Xsn

tn
Xs1

t1−1 . . . Xsn
tn−1

...
...

Xs1
t1−T+k+1 . . . Xsn

tn−T+k+1


and define X,Y and I analogously. Define rI as the residuals of regressing I on B with
ordinary least squares and define rX and rY analogously. Define PI := rI(rI

⊤rI)
−1r⊤I and

β̂ :=
(
r⊤XPIrX

)−1
r⊤XPIrY .

This is the closed-form solution to (10). By Thams et al. (2022, Theorem 5) β̂ is consistent
for T →∞.

C Additional information on Section 4

C.1 Additional autocorrelation and error plots for conditional IV

In Section 4, we show that the absolute percentage error of the naive IV estimator CIV(Wt|Pt →
Dt|∅), which neglects time dependencies, depends on the structural autocorrelation present in
both the instrument and the demand equation (see Figure 6 for empirical results for Model I).
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Figure 12 shows the corresponding plot for Model II, where the autocorrelation is induced
by the autocorrelated error term with βB1, and an estimator that conditions on the past of
the dependent variable: CIV(Wt|Pt → Dt|Dt−1) (estimator #3). The results for Model II
are consistent with the general findings that the error depends on the underlying structural
autocorrelation of both the instrument and the demand.

In Section 4, we further argue that knowing the observed level of autocorrelation of
demand, e.g., obtained by analyzing the (partial) autocorrelation function, does not suffice to
correct the estimation bias: the observed autocorrelation of the demand function is associated
with different levels of error for the naive IV estimator CIV(Wt|Pt → Dt|∅) (see Figure 7).
Figure 13 extends the same analysis to estimator #3, which conditions on past demand. As
expected from the theory, if the estimation model matches the data generation process, the
estimator is unbiased regardless of the observed level of autocorrelation. However, under
model misspecification, the same observed level of autocorrelation can be associated with
percentage errors ranging from −300 MW/(EUR/MWh) to 200 MW/(EUR/MWh).

C.2 Additional indicator plots for Model II and Model III

In Section 4, we have compared the statistical performance of estimators #2, #8 and #4
on data generated from Model I. Figure 14 and Figure 15 compare the performances on
data generated by Models II and III, respectively. As expected from theory, all estimators
maintain coverage regardless of sample size. Estimator #8 tends to have a smaller absolute
percentage error and smaller confidence intervals.

C.3 Divergence between CIV estimates for simulated data

In Section 3, we have argued that non-overlapping confidence intervals of presumably valid
estimators should lead to model rejection (see also Figure 5 for data from Model I). Fig-
ures 16 and 17 show the corresponding patterns of CIV estimators for Model II and Model III,
respectively. The table to the right of the figures shows which estimators are valid according
to the CIV criteria.

For Model II (Figure 16), the estimators with a checkmark in column II are valid, and
the confidence intervals of the corresponding estimators overlap. As done by estimator #3,
conditioning on lagged demand generally induces a bias as the estimator conditions on a
collider. For Model II, the estimator #7 is a special case: Based on the CIV criteria alone,
the estimator is invalid. The estimated effect Pt → Dt is nevertheless close to the real effect.
The pattern of estimators we observed in Figure 17 is also consistent with the expectation
given the Model III assumption. If one were to assume Model III, the researcher does not
see much evidence of rejecting that model assumption. However, if, for example, she were
to incorrectly assume Model I, there is evidence that this assumption is false (see, e.g.,
estimators #2 and #3).
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D Additional information on Section 5

D.1 Data

We now describe in more detail the data used in the application. The main variables are
electricity load (MW), electricity price (€/MWh), and, for the instrument, wind genera-
tion (MW, including both onshore and offshore generation), all obtained from ENTSO-E
(2023), the European Network of Transmission System Operators for Electricity. ENTSO-
E’s measurement and reporting of variables is bidding zone-specific. Since October 1, 2018,
the bidding zone includes the territory of Germany and Luxembourg. Previously, it also
included the territory of Austria. The data used in our analysis spans from November 1st,
2017, to December 31st, 2020.

In addition to the main variables, several control series are incorporated into the analysis.
If the data exists at a daily frequency, we assume the same value for every hour of the day.

• at hourly frequency:

– solar PV power generation (from ENTSO-E (2023))

– surface temperature data for Germany from NASA’s MERRA-2 (Global Modeling
And Assimilation Office and Pawson, 2015), transformed according to Eurostat’s
methodology (Eurostat, 2023).

• at daily frequency, all from Investing.com (2023):

– price of emissions allowances (EUA yearly futures)

– coal prices (API 2 CIF ARA ARGUS-McCloskey futures)

– natural gas price (Dutch TTF futures)

Public holidays and school holidays are two variables constructed as indices based on
the fraction of the German population affected by a holiday on a given day, using data
from the Federal Statistical Office of Germany (Statistisches Bundesamt Deutschland) for
the population by state (Destatistis, 2023), public holiday dates from Python’s ’holidays‘
package (Montel and Yakovets, 2023), and school holiday dates from Feiertagskalender (2023).
However, holidays common to the whole country and resulting in a value of holidayt = 1
(e.g., Easter, Christmas, and the Day of German Unity on October 3rd) are dropped from
the dataset. The largest observed value strictly smaller than one equals 0.644 (three days)
and 0.568 (four days).

We also include the following covariates: sunlight, indicating whether at a given hour of
the year, it is day (1) or night (0) at the geographic center of Germany (at 51◦09’ N, 10◦26’
E) using Python’s ’suntime‘ package (Stopa, 2019); hour of the week (one-hot encoding, 167
variables), month of the year (one-hot encoding, 11 variables), and year (one-hot encoding,
four variables).

Figure 18 shows the autocorrelation and partial autocorrelation plots of the instrument
and the electricity load after controlling for the control variables. We observe a significant
autocorrelation, which is most pronounced for lags 1 and 2 but extends to up to 50 lags,
corresponding to more than three days.
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D.2 Sensitivity analysis for the price elasticity of German electricity de-
mand

In Section 5, we assume a homogeneous elasticity across hours. However, structurally differ-
ent consumers may be active across different hours of the day. In particular, one may expect
different consumers during peak and off-peak hours. They could either have different elastic-
ities, or they could also have different dynamic behavior. We split the data into two periods
and perform the same analysis as in Section 5 on each of the splits: on-peak in Figure 19 and
off-peak in Figure 20. The magnitudes of the elasticity estimates (log-log) and the demand
response (linear) are comparable. However, the pattern of the estimates is different in the
two different splits. This suggests that nighttime consumption has different dynamics than
daytime consumption. Given the observed pattern of estimators, we further have to reject
all three proposed simple models. This calls for carefully considering the model dynamics if
one wants to delve deeper into how electricity consumers respond to a high-frequency price
signal.
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Figure 9: The own-price elasticity of aggregated German electricity demand, obtained by
CIV estimators (top: linear specification; bottom: log-log specification). The highlighted
area corresponds to the confidence interval of estimator #2. The tables on the right are
reproductions of Table 1, showing the validity of each strategy for the structural causal
models described in Section 2.
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Figure 10: Illustrations of conceptually different interventions in a market at equilibrium.
Left: Market at equilibrium, i.e., the state without any intervention. Middle: Hypothetical
intervention on the equilibrium price, fixing the equilibrium price at Pfix. The demand
elasticity is sufficient to calculate the effect of the intervention on the quantity demanded.
However, the market does not clear because marginal cost is less than marginal willingness
to pay. Richt: Factual intervention Xshift that shifts the supply curve outward, leading to a
new market equilibrium.

Figure 11: Left: Snapshot of a full-time graph at time point t. Right: Marginalized version
(see Definition A.1), at time t. The resulting graphical object includes both directed (← or
→) and bidirected edges (↔).
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Figure 12: Isolines showing the average absolute percentage error of the point estimator
as a function of the structural autocorrelation of wind (instrument) and the structural auto-
correlation βB1 of the price-insensitive demand (dependent variable) for estimator #3. For
the simulations, we divide both axes into ten equidistantly spaced autocorrelation coeffi-
cients between 0 and 1 each, based on which we run 20 simulations with five years of data
(T = 43, 800).
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Figure 13: The percentage error of the CIV estimator #3 is shown as a function of the
observed autocorrelation of demand αD1. In each simulation we vary the structural de-
pendencies: In Models I and II, the strengths of the structural autocorrelations, βD1 and
βB1, are both varied between −0.25 and 0.99. In Model III, βP1 is varied between −250
MW/(EUR/MWh) and 250 MW/(EUR/MWh). The color intensity increases in tandem
with the aforementioned ranges. For each model, 400 simulations were conducted, with a
sample period of five years (T = 43, 800).
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Figure 14: The performance of valid CIV estimators based on the indicators (a) coverage, (b)
percentage error, and (c) length of the confidence interval for Model II at different sample
sizes. The shaded areas represent the 95% confidence interval for the indicators. For each
sample size, 50 simulations were run. For data generation, the parameters of the demand
equation (5) are set to βP = −100 MW/(EUR/MWh) and βB1 = 0.9.
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Figure 15: The performance of valid CIV estimators based on the indicators (a) coverage, (b)
percentage error, and (c) length of the confidence interval for Model III at different sample
sizes. The shaded areas represent the 95% confidence interval for the indicators. For each
sample size, 50 simulations were run. For data generation, the parameters of the demand
equation (8) are set to βP = −100 MW/(EUR/MWh) and βP1 = +50 MW/(EUR/MWh).

33



ELASTICITIES WITH GRAPHS

I II III

× ×

× ×

×
×

×

200 150 100 50 0 50 100

#8   CIV({Wt s}26
s = 0|(Pt, Pt 1, Dt 1) Dt| ) 

#7   CIV({Wt s}26
s = 0|(Pt, Pt 1) Dt|Dt 1) 

#6   CIV({Wt s}26
s = 0|(Pt, Pt 1) Dt| ) 

#5   CIV({Wt s}26
s = 0|(Pt, Dt 1) Dt| ) 

#4   CIV(Wt|Pt Dt|{Wt s, Pt s, Dt s}26
s = 1) 

#3   CIV(Wt|Pt Dt|Dt 1) 

#2   CIV(Wt|Pt Dt|{Wt s}26
s = 1) 

#1   CIV(Wt|Pt Dt| ) 

I II III

× ×

× ×

×
×

×

estimated own-price demand response P (Pt Dt)

estimated cross-price demand response P1 (Pt 1 Dt)

true own-price demand response P

true cross-price demand response P1

Figure 16: CIV estimates of the demand response β̂P when the simulated data does not
exhibit structural autocorrelation of demand (Model II, see Figure 3 (left)). The slope of
the price-sensitive demand βP is set to −100 MW/(EUR/MWh), and the autocorrelation
coefficient of the non-sensitive demand is set to βB1 = 0.9.
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Figure 17: CIV estimates of the demand response β̂P when the simulated data repre-
sents a cross-price response (Model III, see Figure 3 (right)). The true effect is βP = −100
MW/(EUR/MWh), and the cross-price elasticity is βP1 = +50 MW/(EUR/MWh), repre-
senting substitution. According to theory (see Table 1), the estimators in column III should
be consistent, and the simulation results support this. In this model, the validity of the
estimators extends to both effects: A valid strategy recovers both the own-price response β̂P

and the cross-price response β̂P1.
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Figure 18: Autocorrelation function (above) and partial autocorrelation function (below) of
the residuals of the instrumental time series wind power generation (left), and the residuals of
the dependent variable German electricity demand (right). In all four cases, we first regress
the original data on the covariates and then obtain the autocorrelation of the residual time
series.

35



ELASTICITIES WITH GRAPHS

I II III
× ×

× ×

×
×

×

800 600 400 200 0 200 400 600 800
estimated slope of the demand curve

#1   CIV(Wt|Pt Dt| )

#2   CIV(Wt|Pt Dt|{Wt s}50
s = 1)

#3   CIV(Wt|Pt Dt|Dt 1)

#4   CIV(Wt|Pt Dt|{Wt s, Pt s, Dt s}50
s = 1)

#5   CIV({Wt s}50
s = 0|(Pt, Dt 1) Dt| )

#6   CIV({Wt s}50
s = 0|(Pt, Pt 1) Dt| )

#7   CIV({Wt s}50
s = 0|(Pt, Pt 1) Dt|Dt 1)

#8   CIV({Wt s}50
s = 0|(Pt, Pt 1, Dt 1) Dt| )

I II III
× ×

× ×

×
×

×

I II III
× ×

× ×

×
×

×

0.3 0.2 0.1 0.0 0.1 0.2 0.3
estimated elasticity

#1   CIV(Wt|Pt Dt| )

#2   CIV(Wt|Pt Dt|{Wt s}50
s = 1)

#3   CIV(Wt|Pt Dt|Dt 1)

#4   CIV(Wt|Pt Dt|{Wt s, Pt s, Dt s}50
s = 1)

#5   CIV({Wt s}50
s = 0|(Pt, Dt 1) Dt| )

#6   CIV({Wt s}50
s = 0|(Pt, Pt 1) Dt| )

#7   CIV({Wt s}50
s = 0|(Pt, Pt 1) Dt|Dt 1)

#8   CIV({Wt s}50
s = 0|(Pt, Pt 1, Dt 1) Dt| )

I II III
× ×

× ×

×
×

×

Own-price elasticity (Pt Dt)
Cross-price elasticity (Pt 1 Dt)

Figure 19: Own-price elasticity of on-peak German electricity demand, obtained from the CIV
estimators given in Table 1 in linear specification (top) and log-log specification (bottom).
The highlighted area corresponds to the confidence interval of estimator #2. The tables on
the right are reproductions of Table 1, showing the validity of each strategy under different
structural model assumptions. On-peak hours refer to the time between 8:00 and 19:59.
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Figure 20: Own-price elasticity of off-peak German electricity demand, obtained from the
CIV estimators given in Table 1 in the linear specification (top) and log-log specification
(bottom). The highlighted area corresponds to the 95% confidence interval of estimator #2.
The tables on the right are reproductions of Table 1, showing the validity of each strategy
under different structural model assumptions. Off-peak hours refer to the time between 20:00
and 7:59.
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